207. Course Schedule
207. Course Schedule
This problem uses DFS and BFS to determine if a graph can be topologically sorted.
- The BFS approach first converts the given pairs into a graph stored in a
vector<unordered_set>format, then calculates the in-degree of each node. It starts by finding nodes with an in-degree of 0. If none are found, it returns false. Once a node with an in-degree of 0 is found, its in-degree is marked as -1, and the in-degree of its neighboring nodes is decremented by 1. This process is repeatedntimes. If a node with an in-degree of 0 can be found each time, then a topological sort is possible.
class Solution {
public:
bool canFinish(int numCourses, vector<pair<int, int>>& prerequisites) {
vector<unordered_set<int>> graph = make_graph(numCourses, prerequisites);
vector<int> degrees = compute_indegree(graph);
for (int i = 0; i < numCourses; i++) {
int j = 0;
for (; j < numCourses; j++)
if (!degrees[j]) break;
if (j == numCourses) return false;
degrees[j] = -1;
for (int neigh : graph[j])
degrees[neigh]--;
}
return true;
}
private:
vector<unordered_set<int>> make_graph(int numCourses, vector<pair<int, int>>& prerequisites) {
vector<unordered_set<int>> graph(numCourses);
for (auto pre : prerequisites)
graph[pre.second].insert(pre.first);
return graph;
}
vector<int> compute_indegree(vector<unordered_set<int>>& graph) {
vector<int> degrees(graph.size(), 0);
for (auto neighbors : graph)
for (int neigh : neighbors)
degrees[neigh]++;
return degrees;
}
};
- The DFS approach checks for cycles in the graph using DFS. It uses
onPathas a marker array to indicate if a node has been visited on the current path andvisitedto mark nodes that have already been visited. The functiondfs_cycle()checks if there is a cycle on the current DFS path.
class Solution {
public:
bool canFinish(int numCourses, vector<pair<int, int>>& prerequisites) {
vector<unordered_set<int>> graph = make_graph(numCourses, prerequisites);
vector<bool> onpath(numCourses, false), visited(numCourses, false);
for (int i = 0; i < numCourses; i++)
if (!visited[i] && dfs_cycle(graph, i, onpath, visited))
return false;
return true;
}
private:
vector<unordered_set<int>> make_graph(int numCourses, vector<pair<int, int>>& prerequisites) {
vector<unordered_set<int>> graph(numCourses);
for (auto pre : prerequisites)
graph[pre.second].insert(pre.first);
return graph;
}
bool dfs_cycle(vector<unordered_set<int>>& graph, int node, vector<bool>& onpath, vector<bool>& visited) {
if (visited[node]) return false;
onpath[node] = visited[node] = true;
for (int neigh : graph[node])
if (onpath[neigh] || dfs_cycle(graph, neigh, onpath, visited))
return true;
return onpath[node] = false;
}
};