HomeBlogTopicsPublish
  • rss

  • contact

© 2025 MIT Licensed

Topics→Machine Learning→Lagrangian Conditions under Inequality Constraints

Machine Learning

Fundamentals
Decision TreeBackpropagationLinear 1Linear 2Linear 3Linear DualLinear IntroML Numerical MethodsNaive SolveLagrangian Conditions under Equality ConstraintsLagrangian Conditions under Inequality ConstraintsSupport Vector Machine 1Support Vector Machine 2Support Vector Machine 3Convex
Deep Learning Acceleration
Paper DartsPaper MobileNetsPaper ShuffleNetPaper HashingTricksPaper ShuffleNetV2Neural Architecture Search MilestonePyTorch Training Acceleration
Computer Vision
Paper RobotPaper InceptionV4Dataset Cityscapes
Reinforcement Learning
Paper Deep Q-Network

Lagrangian Conditions under Inequality Constraints

October 19, 2017

by Frank

与前文讨论的只含等式约束的优化问题求解类似,含不等式约束的优化问题同样可以用拉格朗日乘子法进行求解

与前文讨论的只含等式约束的优化问题求解类似,含不等式约束的优化问题同样可以用拉格朗日乘子法进行求解 对于一般形式的优化问题:

minimizef(x)subject toh(x)=0g(x)≤0minimize\quad f(x)\\ subject\ to\quad h(x)=0\\ \quad\quad g(x)\le 0minimizef(x)subject toh(x)=0g(x)≤0

其中,f:Rn→R,h:Rn→Rm,m≤n,g:Rn→Rpf:R^{n}\to R,h:R^{n}\to R^{m},m\le n,g:R^{n}\to R^{p}f:Rn→R,h:Rn→Rm,m≤n,g:Rn→Rp 引入下面两个定义:

定义 1:对于一个不等式约束gj(x)≤0g_{j}(x)\le 0gj​(x)≤0,如果在x∗x^{*}x∗处gj(x∗)=0g_{j}(x^{*})=0gj​(x∗)=0,那么称该不等式约束是x∗x^{*}x∗处的起作用约束;如果在x∗x^{*}x∗处gj(x∗)<0g_{j}(x^{*})<0gj​(x∗)<0,那么称该约束是x∗x^{*}x∗处的不起作用约束。按照惯例,总是把等式约束hi(x)h_{i}(x)hi​(x)当作起作用的约束

**定义 2:**设x∗x^{*}x∗满足h(x∗)=0,g(x∗)≤0h(x^{*})=0,g(x^{*})\le 0h(x∗)=0,g(x∗)≤0,设J(x∗)J(x^{*})J(x∗)为起作用不等式约束的下标集:

J(x∗)≜{j:gj(x∗)=0}J(x^{*})\triangleq \{j:g_{j}(x^{*})=0\}J(x∗)≜{j:gj​(x∗)=0}

如果向量

∇hi(x∗),∇gj(x∗),1≤i≤m,j∈J(x∗)\nabla h_{i}(x^{*}),\nabla g_{j}(x^{*}),1\le i\le m,j\in J(x^{*})∇hi​(x∗),∇gj​(x∗),1≤i≤m,j∈J(x∗)

是线性无关的,那么称x∗x^{*}x∗是一个正则点

下面介绍某个点是局部极小点所满足的一阶必要条件,即 KKT 条件。 **KKT 条件:**设f,h,g∈C1f,h,g\in C^{1}f,h,g∈C1,设x∗x^{*}x∗是问题h(x)=0,g(x)≤0h(x)=0,g(x)\le 0h(x)=0,g(x)≤0的一个正则点和局部极小点,那么必然存在λ∗∈Rm\lambda^{*}\in R^{m}λ∗∈Rm和μ∗∈Rp\mu^{*}\in R^{p}μ∗∈Rp,使得以下条件成立:

μ∗≥0Df(x∗)+λ∗TDh(x∗)+μ∗TDg(x∗)=0Tμ∗Tg(x∗)=0h(x∗)=0g(x∗)≤0\mu^{*}\ge0\\ Df(x^{*})+\lambda^{*T}Dh(x^{*})+\mu^{*T}Dg(x^{*})=0^{T}\\ \mu^{*T}g(x^{*})=0\\ h(x^{*})=0\\ g(x^{*})\le0μ∗≥0Df(x∗)+λ∗TDh(x∗)+μ∗TDg(x∗)=0Tμ∗Tg(x∗)=0h(x∗)=0g(x∗)≤0

那么在求解不等式约束的最优化问题的时候,可以搜索满足 KKT 条件的点,并将这些点作为极小点的候选对象。##二阶充分必要条件 除了一阶的 KKT 条件之外,求解这类问题还有二阶的充分必要条件。

**二阶必要条件:**在上述的问题中若x∗x^{*}x∗是极小点且f,h,g∈C2f,h,g\in C^{2}f,h,g∈C2。假设x∗x^{*}x∗是正则点,那么存在λ∗∈Rm\lambda^{*}\in R^{m}λ∗∈Rm和μ∗∈Rp\mu^{*}\in R^{p}μ∗∈Rp使得

  1. μ∗≥0,Df(x∗)+λ∗TDh(x∗)+μ∗TDg(x∗)=0T,μ∗Tg(x∗)=0\mu^{*}\ge 0,Df(x^{*})+\lambda^{*T}Dh(x^{*})+\mu^{*T}Dg(x^{*})=0^{T},\mu^{*T}g(x^{*})=0μ∗≥0,Df(x∗)+λ∗TDh(x∗)+μ∗TDg(x∗)=0T,μ∗Tg(x∗)=0
  2. 对于所有y∈T(x∗)y\in T(x^{*})y∈T(x∗),都有yTL(x∗,λ∗,μ∗)y≥0y^{T}L(x^{*},\lambda^{*},\mu^{*})y\ge0yTL(x∗,λ∗,μ∗)y≥0成立

**二阶充分条件:**假定f,h,g∈C2f,h,g\in C^{2}f,h,g∈C2,x∗∈Rnx^{*}\in R^{n}x∗∈Rn是一个可行点,存在向量λ∗∈Rm\lambda^{*}\in R^{m}λ∗∈Rm和μ∗∈Rp\mu^{*}\in R^{p}μ∗∈Rp使得

  1. μ∗≥0,Df(x∗)+λ∗TDh(x∗)+μ∗TDg(x∗)=0T,μ∗Tg(x∗)=0\mu^{*}\ge 0,Df(x^{*})+\lambda^{*T}Dh(x^{*})+\mu^{*T}Dg(x^{*})=0^{T},\mu^{*T}g(x^{*})=0μ∗≥0,Df(x∗)+λ∗TDh(x∗)+μ∗TDg(x∗)=0T,μ∗Tg(x∗)=0
  2. 对于所有y∈T~(x∗,μ∗),y≠0y\in \widetilde{T}(x^{*},\mu^{*}),y\neq0y∈T(x∗,μ∗),y=0,都有yTL(x∗,λ∗,μ∗)y>0y^{T}L(x^{*},\lambda^{*},\mu^{*})y>0yTL(x∗,λ∗,μ∗)y>0成立

那么x∗x^{*}x∗是优化问题h(x)=0,g(x)≤0h(x)=0,g(x)\le 0h(x)=0,g(x)≤0的严格局部极小点

←Previous: Lagrangian Conditions under Equality ConstraintsNext: Support Vector Machine 1→

Comments